Rikaline GPS-20

GPS Engine Board

SiRF Star II

V1.0 Aug 09, 2002

User's Guide

Rikaline Marketing Corp.

5F-1, 125, RooseveltRd., Sec. 5, Taipei 116, Taiwan, R.O.C. Phone: +886-2-2934-5456 Fax: +886-2-2934-4373 E-Mail: <u>info@rikaline.com.tw</u> Web: www.rikaline.com.tw

All Right Reserved

TABLE OF CONTENTS

1.	Intro	duction	3
	1.1	Overview	-
	1.2	Features	3
	1.3	Technical Specifications	3
2.	Oper	ational Characteristics	5
	2.1	Initialization	
	2.2	Navigation	5
3.	Hard	ware Interface	6
	3.1	Connector	6
	3.2	Pin Assignment	6
	3.3	Trickle Power Description	
	3.4	Push-to-Fix Description	
	3.5	SRAM Data Backup Description	
	3.6	Mechanical Dimension	
4.	Softv	vare Interface	11
	4.1	NMEA Transmitted Sentences	11
	4.2	RTCM Received Data	
5.	Earth	Datums	15
	5.1	Earth Datums	15
	6.2	Setting Syntax	16
6.	Orde	ring Information	17
	7.1	Product Options	
	7.2	Accessories	
8.	Warr	anty	17

1. Introduction

1.1 Overview

The *Rikaline* **GPS-20 GPS Engine Board** is a total solution GPS receiver, designed based on **SiRF Star II** Architecture and pin to pin compatible with SiRF Start I engine board for replacing the system existing in the market using SiRF Start I. This positioning application meets strict needs such as car navigation, mapping, surveying, security, agriculture and so on. Only clear view of sky and certain power supply are necessary to the unit. It communicates with other electronic utilities via compatible dual-channel through RS-232 or TTL and saves critical satellite data by built–in backup memory. With low power consumption, the **GPS-20** tracks up to 12 satellites at a time, re-acquires satellite signals in 100 ms and updates position data every second. Trickle-Power allows the unit operates a fraction of the time and Push-to-Fix permits user to have a quick position fix even though the receiver usually stays off.

1.2 Features

The GPS-20 provides a host of features that make it easy for integration and use.

- 1. SiRF Star II chipset with embedded ARM7TDMI CPU available for customized applications in firmware.
- 2. High performance receiver tracks up to 12 satellites while providing first fast fix and low power consumption.
- 3. Differential capability utilizes real-time RTCM corrections producing 1-5 meter position accuracy.
- 4. Compact design ideal for applications with minimal space.
- 5. A rechargeable battery sustains internal clock and memory. The battery is recharged during normal operation.
- 6. User initialization is not required.
- 7. Dual communication channels and user selectable baud rates allow maximum interface capability and flexibility.
- 8. Optional communication levels, RS-232 and TTL meet ordinary application and new fashions of connecting PDA with TTL or RS-232 output.
- 9. FLASH based program memory: New software revisions upgradeable through serial interface.
- 10. Built-in WAAS and EGNOS demodulator.

1.3 Technical specifications

1.3.1 Physical Characteristics

Dimension: 71.1(L) x 40.6(W) x 14.4(H) mm 2.80"(L) x 1.60"(W) x 0.57"(H). Weight: 25g

1.3.2 Environmental Characteristics

- 1) Operating temperature: -40°C to +85°C
- 2) Storage temperature: -55°C to +100°C.

-45°C to +80°C with battery

1.3.3 Electrical Characteristics

1.3.3.1 General:

- 1) Frequency: L1, 1,575.42MHz
- 2) C/A Code: 1.023MHz Chip Rate
- 3) Channels: 12

1.3.3.2 Power

	GPS-20 5	V Version	GPS-20	3.3V	Version
	Т	TL		TTL	
Main Power	+5VD)C±5%	3.	3VDC±10)%
Supply Current	170mA Typical		170mA Typical		
Backup Power	+2.5V to 3.3V		+2.5V to 3.3V		3V
Backup Current	10µA Typical		10µA Typical		cal
Packup Period	230hr (9.6 days)		230hr (9.6 days)		

1.3.3.3 Datum

WGS 84

1.3.4 Performance

1.3.4.1 Acquisition

Velocity

- 1) Tracks up to 12 satellites.
- 2) Update rate: 1 second.
- 3) Acquisition time

Reacquisition	0.1 sec., averaged
	-
Snap Start	3 sec, averaged
Hot start	8 sec., averaged
i iui siari	o sec., averageu
Warm start	38 sec., averaged
	•
Cold start	45 sec., averaged

1.3.4.2 Position Aaccuracy: (Non Differential GPS)

Position 5-25 meter CEP without SA

0.1 meters/second, without SA

Time 1 microsecond synchronized GPS time

1.3.4.3 DGPS Accuracy (Differential GPS)

Position1 to 5 meter, typicalVelocity0.05 meters/second, typical

1.3.4.4 Dynamic Conditions

Altitude	18,000	0 meters (60,000 feet) max
Velocity	515	meters / second (1,000 knots) max
Acceleration	4 G,	max
Jerk	20	meters/second ³ , max

1.3.4.5 1PPS Pulse

Level TTL Pulse Duration 100ms Time Reference at the pulse positive edge Measurements Aligned to GPS second, ± 1 microsecond

1.3.5 Interfaces

1.3.5.1 Interface

Two full duplex serial communication, RS-232 or TTL compatible level, with user selectable baud rate (4800-Default, 9600, 19200, 38400).

1.3.5.2 Protocol Message

SiRF Binary – Position, Velocity, Altitude, Status and Control NMEA 0183 Version 2.2 ASCII output -- GGA, GLL, GSA, GSV, RMC, ZDA and VTG.

1.3.5.3 DGPS Protocol

Real-time Differential Correction input (RTCM SC-104 version 2.00 message types 1, 5 and 9).

2. Operational characteristics

2.1 Initialization

As soon as the initial self-test is complete, the GPS-20 begins the process of satellite acquisition and tracking automatically. Under normal circumstances, it takes approximately 45 seconds to achieve a position fix, 38 seconds if ephemeris data is known. After a position fix has been calculated, information about valid position, velocity and time is transmitted over the output channel.

The GPS-20 utilizes initial data, such as last stored position, date, time and satellite orbital data, to achieve maximum acquisition performance. If significant inaccuracy exists in the initial data, or the orbital data is obsolete, it may take more time to achieve a navigation solution. The GPS-20 Auto-locate feature is capable of automatically determining a navigation solution without intervention from the host system. However, acquisition performance can be improved when the host system initializes the GPS-20 in the following situation:

- 1) Moving further than 500 kilometers.
- 2) Failure of data storage due to the inactive internal memory battery.

2.2 Navigation

After the acquisition process is complete, the GPS-20 sends valid navigation information over output channels. These data include:

- 1) Latitude/longitude/altitude
- 2) Velocity
- 3) Date/time
- 4) Error estimates
- 5) Satellite and receiver status

The GPS-20 sets the default of auto-searching for real-time differential corrections in RTCM SC-104 standard format, with the message types 1, 5, or 9. It accomplishes the satellite data to generate a differential (DGPS) solution. The host system, at its option, may also command the GPS-20 to output a position whenever a differential solution is available.

3. Hardware interface

3.1 Connectors

3.1.1 Antenna Connector

MCX, RSMA

3.1.2 Interface Connector

20-Pin and 10-Pin straight header, 2mm pitch

3.2 Pin Assignment of Connector

Table 1-1 Pir	n list of the 20-F	Pin Digital Interface Connector (CN1)
Pin Number	Name	Description
1	ANT_PWR	Antenna DC Voltage
2	VCC_5V	+5 DC Power Input
3	BAT	Backup Battery
4	VCC_3V	+3.3V DC Power Input
5	PBRES	Push Button Reset Input. Active Low
6	GPIOA	SW dependent functions (note 1)
7	GPIOB	SW dependent functions (note 1)
8	GPIOC	SW dependent functions (note 1)
9	GPIOD	SW dependent functions (note 1)
10	GND	Ground
11	TXA	Serial Data Output A
12	RXA	Serial Data Input A
13	GND	Ground
14	ТХВ	Serial Data Output B
15	RXB	Serial Data Input B
16	GND	Ground
17	BOOTSEL	Booting Mode Select
18	GND	Ground
19	TIMEMARK	1PPS Time Mark Output
20	ALT/GPIOE	Alternative output (Reserved)

Table 1-2 Pin list of the 10-Pin Digital Interface Connector (JP1)

Pin Number	Name	Description
1	GPIOF	SW dependent functions (note 1)
2	JTDI	JTAG software debug function
3	GPIOG	SW dependent functions (note 1)
4	JTMS	JTAG software debug function
5	GPIOH	SW dependent functions (note 1)
6	JTCK	JTAG software debug function
7	GPIOI	SW dependent functions (note 1)
8	JTDO	JTAG software debug function
9	JTRST	JTAG software debug function
10	GND	Ground

Note: 1) Pulled high (VCC/VDD) through on-board 100K Ohm resister.

2) Pulled low (GND) through on-board 100K Ohm resister.

3.2.1 VCC_5V (+5V DC Power Input)

This is the main DC power supply for a +5V-powered board. (Required for the GPS-20 5V version)

3.2.2 VCC_3V (+3.3V DC Power Input)

This is the main DC power supply for a +3.3V-powered board. (Required for 3.3V version)

3.2.3 ANT_PWR

DC voltage for an active antenna. This voltage is not required for operation with a passive antenna. The antenna power may be supplied through the interface connector (CN1). The current limiting (<200mA) should be supplied externally.

3.2.4 GND

GND provides the ground for the board. Connect all grounds.

3.2.5 Serial Data: RXA, RXB, TXA and TXB

The board supports two full duplex serial channels. All support variable baud rates, and all can be controlled from the appropriate screens in GPS Monitor software. You can directly communicate with a PC serial port. (TTL level should be turned to RS-232 level)

3.2.6 RXA

This is the main receiving channel and is used to receive software commands to the board from GPS Monitor software or from user written software.

3.2.7 RXB

This is the auxiliary receiving channel and is used to input differential corrections to the board to enable DGPS navigation.

3.2.8 TXA

This is the main transmitting channel and is used to output navigation and measurement data to GPS Monitor or user written software.

3.2.9 TXB

For user's application

3.2.10 PBRES

This pin provides an active-low reset input to the board. It causes the board to reset and start searching for satellites. PB Reset is an optional input and, if not utilized, it may be left open.

3.2.11 Time mark

This pin provides 1 pulse per second output from the board, which is synchronized to within 1 microsecond of GPS time. The output is a TTL positive level signal.

3.2.12 Battery (BAT)

This is the battery backup supply that powers the SRAM and RTC when main power is off. Typical current draw is 10 μ A.

Without an external backup battery or supercap, the board will execute a cold start after every turn

on. To achieve the faster start-up offered by a hot start or warm start, either a battery backup input must be connected or a recharge battery installed

Table 1-3 Backup Battery Voltage Range

Board	MIN	MAX
GPS-20	2.5	3.3

With a 3.3V Lithium-Ion (2.3mAh) rechargeable .To maximize battery lifetime (3~5 years), the battery voltage should not exceed 3.3V.

3.2.13 GPIO Functions

Several I/Os of CPU are connected to the digital interface connector for consumer applications and are labeled GPIOA to GPIOI.

3.2.14 JTAG Functions

The JTAG interface provides a standard development/debugging interface. A simple header connects to a variety of the off-the-shelf emulators to provide single-step, trap and access to all the internal registers of the GSP2e.

3.3 TricklePower[™] Description

The GPS-20 design includes all the functionality necessary to implement the SiRF TricklePower[™] mode of operation. In this mode, the lowest average power dissipation is achieved by powering down the board (after a position is determined) in such a manner that when it is turned back on it can recomputed a position fix in the shortest amount of time. Standard TricklePower operates in three states

3.3.1 Tracking State

In this state, the board is fully powered, tracking satellites, and gathering data.

3.3.2 CPU State

In this mode, the GRF2i has been turned off which removes the clock to the GSP2e. Without a clock, the GSP2e is effectively powered down (although the RTC keeps running). The CPU would switch to ECLK and kept running to process the GPS data until a position fix is determined and the result has been transmitted by the serial communication interface.

3.3.3 Trickle State

In this state, the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active. After a set amount of time, the RTC generates an NMI signal to wake up the ARM-7 microprocessor and reset the receiver back to tracking state.

The default time for each TricklePower mode and the approximate current consumed (in each mode) is shown in Table 1-4. For example, the TricklePower duty cycle (20%), the average receiver power dissipation is approximately 165mW (60mA @ 3.3V) while maintaining one-second update rate.

Table 1-4 TricklePower [™] I	Power Consumption
---------------------------------------	-------------------

Mode Tim Mse	Current	+3.3V Current mA
-----------------	---------	------------------------

8

Tracking	220	170	160
CPU	360	33	29
Trickle	420	0.55	0.55

Note: Table 1-4 does not include the external antenna power, which must be controlled from the system power supply.

3.4 Push-to-Fix Description

The purpose of Push-to-Fix mode is to support applications where a position fix is only required when requested by the user (or the application). To support this, the board is left in the Trikle state until commanded to generate a fix.

3.4.1 Power-on State

In this state, the receiver calculates the position once, collects the ephemeris, and calibrates the RTC before going back to the Trickle State.

3.4.2 Trickle State

In this state only the RTC is running. The supply current is typically <500uA, which includes the standby current of the GSP2e and CPU.

There are three events that can happen which effectively return the CPU to normal operation:

3.4.3 Power-on

If power is removed, then re-applied to the board a reset signal is generated by the CPU supervisor. After the reset has been removed, the CPU will start up, get a fix and return to Trickle State. This typically takes 2 to 6 seconds.

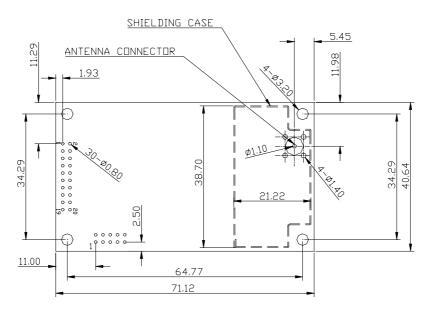
3.4.4 Ephemeris Collection

Every 30 minutes the GSP2e WAKEUP signal is activated, wake up the CPU to calculate a fix, collect a new ephemeris, calibrate the RTC and then go to the Trickle State.

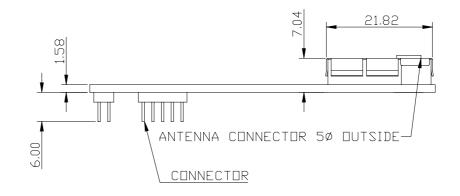
3.4.5 User Requested Fix

With each user request of a fix, the CPU will wake up by toggling PBRES low (pin 5 of the digital interface connector). The CPU is restarted and (following a Snap Start) a fix is calculated. Before going back to Trickle State, the CPU will check the ephemeris and the RTC calibration.

Note – The CPU will restart ~ 200-600 mSec after the PBRES input is brought high.

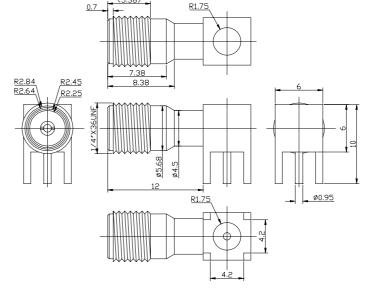

3.5 SRAM DATA BACKUP Description

SiRF chip has an internal 1Mb SRAM for GPS task and OS kernel; besides, we have added an external 4 Mb (Can be expanded to 8Mb) for user storing codes.



3.6 Mechanical Drawing

3.6.1 Top View



3.6.2 Lateral View

(5.38)

3.6.3 Connector

1

Rikaline

4. Software Interface

4.1 NMEA Transmitted Messages

The GPS-20 supported by SiRF Technology Inc. also outputs data in NMEA-0183 format as defined by the National Marine Electronics Association (NMEA), Standard.

The default communication parameters for NMEA output are 4800 baud, 8 data bits, stop bit, and no parity.

Table 4-1 NMEA	Table 4-1 NMEA-0183 Output Messages			
NMEA Record	Description			
GPGGA	Global positioning system fixed data			
GPGLL	Geographic position- latitude/longitude			
GPGSA	GNSS DOP and active satellites			
GPGSV	GNSS satellites in view			
GPRMC	Recommended minimum specific GNSS data			
GPVTG	Course over ground and ground speed			

Table 4-1 NMEA-0183 Output Messages

4.1.1 Global Positioning System Fix Data (GGA)

Table 5-2 contains the values for the following example:

\$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

Table 4-2 GGA Data Format Name Units Description Example Message ID \$GPGGA GGA protocol header UTC Time 161229.487 Hhmmss.sss Latitude 3723.2475 ddmm.mmmm N/S Indicator N=north or S=south Ν 12158.3416 dddmm.mmmm Longitude E/W Indicator W E=east or W=west Position Fix Indicator See Table 5-3 1 Satellites Used 07 Range 0 to 12 HDOP 1.0 Horizontal Dilution of Precision MSL Altitude 9.0 Meters Units Μ Meters Geoid Separation Meters Units Μ Meters Null fields when DGPS is not used Age of Diff. Corr. second Diff. Ref. Station ID 0000 Checksum *18 <CR> <LF> End of message termination

Table 4-3 Position Fix Indicator

Value	Description	
0	0 Fix not available or invalid	
1	GPS SPS Mode, fix valid	
2	Differential GPS, SPS Mode, fix valid	
3	GPS PPS Mode, fix valid	

4.1.2 Geographic Position with Latitude/Longitude (GLL)

Table 4-4 contains the values for the following example:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Table 4-4 GLL Data Format				
Name	Example	Units	Description	
Message ID	\$GPGLL		GLL protocol header	
Latitude	3723.2475		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12158.3416		dddmm.mmmm	
E/W Indicator	W		E=east or W=west	
UTC Position	161229.487		hhmmss.sss	
Status	A		A=data valid or V=data not valid	
Checksum	*2C			
<cr> <lf></lf></cr>			End of message termination	

4.1.3 GNSS DOP and Active Satellites (GSA)

Table 4-5 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15, , , , , , 1.8,1.0,1.5*33

Table 4-5 GSA Data Format				
Name	Example	Units	Description	
Message ID	\$GPGSA		GSA protocol header	
Mode 1	А		See Table 5-6	
Mode 2	3		See Table 5-7	
Satellite Used (1)	07		Sv on Channel 1	
Satellite Used (1)	02		Sv on Channel 2	
Satellite Used			Sv on Channel 12	
PDOP	1.8		Position Dilution of Precision	
HDOP	1.0		Horizontal Dilution of Precision	
VDOP	1.5		Vertical Dilution of Precision	
Checksum	*33			
<cr> <lf></lf></cr>			End of message termination	

Table 4-5 GSA Data Format

(1) Satellite used in solution.

Table 4-6 Mode 1

Value	Description
M	Manual—forced to operate in 2D or 3D mode
A	2D Automatic—allowed to automatically switch 2D/3D

Table 4-7 Mode 2

Value	Description
1	Fix Not Available
2	2D
3	3D

4.1.4 GNSS Satellites in View (GSV)

Table 4-8 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table 4-8 GSV Data Format				
Name	Example	Units	Description	
Message ID	\$GPGSV		GSV protocol header	
Number of Messages	2		Range 1 to 3	
Message Number	1		Range 1 to 3	
Satellites in View	07		Range 1 to 12	
Satellite ID	07		Channel 1 (Range 1 to 32)	
Elevation	79	degrees	Channel 1 (Maximum 90)	
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)	
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking	
Satellite ID	27		Channel 4 (Range 1 to 32)	
Elevation	27	degrees	Channel 4 (Maximum 90)	
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)	
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking	
Checksum	*71			
<cr> <lf></lf></cr>			End of message termination	

Table 4-8 GSV Data Format

NOTE: Items <4>,<5>,<6> and <7> repeat for each satellite in view to a maximum of four (4) satellites per sentence. Additional satellites in view information must be sent in subsequent sentences. These fields will be null if unused.

4.1.5 Recommended Minimum Specific GNSS Data (RMC)

Table 4-9 contains the values for the following example:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Name	Example	Units	Description		
Message ID	\$GPRMC		RMC protocol header		
UTC Time	161229.487		hhmmss.sss		
Status	A		A=data valid or V=data not valid		
Latitude	3723.2475		ddmm.mmm		
N/S Indicator	Ν		N=north or S=south		
Longitude	12158.3416		dddmm.mmmm		
E/W Indicator	W		E=east or W=west		
Speed Over Ground	0.13	Knots			
Course Over Ground	309.62	Degrees	True		
Date	120598		ddmmyy		
Magnetic Variation (1)		Degrees	E=east or W=west		
Checksum	*10				
<cr> <lf></lf></cr>			End of message termination		

Table 4-9 RMC Data Format

(1) SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

4.1.6 Course Over Ground and Ground Speed

Table 4-10 contains the values for the following example:

\$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

Table 4-10 VTG Data Format

GPS-20 Operating Manual

Name	Example	Units	Description	
Message ID	\$GPVTG		VTG protocol header	
Course	309.62	Degrees	Measured heading	
Reference	Т		True	
Course		Degrees	Measured heading	
Reference	М		Magnetic (1)	
Speed	0.13	Knots	Measured horizontal speed	
Units	Ν		Knots	
Speed	0.2	Km/hr	Measured horizontal speed	
Units	K		Kilometers per hour	
Checksum	*6E			
<cr> <lf></lf></cr>			End of message termination	

(1) SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

4.2 RTCM Received Data

The default communication parameters for DGPS Input are 9600 baud, 8 data bits, stop bit, and no parity. Position accuracy of less than 5 meters can be achieved with the GPS-20 by using Differential GPS (DGPS) real-time pseudo-range correction data in RTCM SC-104 format, with message types 1, 5, or 9. As using DGPS receiver with different communication parameters, GPS-20 may decode the data correctly to generate accurate messages and save them in battery-back SRAM for later computing.

5. Earth Datums

5.1 Earth Datums

The following is a list of the GPS-20 earth datum index and the corresponding earth datum name:

Item	Datum	Reference Ellipsoid	Data name
1	Adindan - Ethiopia	Clarke 1880	Data1.dat
2	Afgooye – Somalia	Krassovsky	Data2.dat
3	Alaska, Conus – North American 1983	GRS 1980	Data3.dat
4	Albania – S-42 (Pulkovo 1942)	Krassovsky 1940	Data63.dat
5	Argentina	South American 1969	Data4.dat
6	Australia	Australian – National	Data70.dat
7	Bahrain – Ain el ABD 1970	International	Data5.dat
8	Bangladesh	Everest 1830	Data6.dat
9	Bolivia	South American 1969	Data8.dat
10	Botswana – ARC 1950	Clarke 1880	Data7.dat
11	Brazil	South American 1969	Data9.dat
12	Brunel, East Malaysia	Everest (Sabah & Sarawak)	Data37.dat
13	Canada – North American 1983	GRS 1980	Data10.dat
14	Chile	South American 1969	Data13.dat
15	Colombia	South American 1969	Data12.dat
16	Colombia – Provisional American 1956	International	Data11.dat
17	Czechoslovakia – S-42 (Pulkovo 1942)	Krassovsky 1940	Data64.dat
18	Ecuador	South American 1969	Data14.dat
19	European 1950 – Central Regional Mean	International	Data29.dat
20	European 1950 – Cyprus	International	Data15.dat
21	European 1950 – Eastern Regional Mean	International	Data16.dat
22	European 1950 – Egypt	International	Data17.dat
23	European 1950 – Finland, Norway	International	Data18.dat
24	European 1950 – Greece	International	Data19.dat
25	European 1950 – Iran	International	Data20.dat
26	European 1950 – Italy (Sardinia)	International	Data21.dat
27	European 1950 – Italy (Sicily)	International	Data22.dat
28	European 1950 – Malta	International	Data23.dat
29	European 1950 – Northern Regional Mean	International	Data24.dat
30	European 1950 – Portugal, Spain	International	Data25.dat
31	European 1950 – Southern Regional Mean	International	Data26.dat
32	European 1950 – Tunisia	International	Data27.dat
33	European 1950 – Western Regional mean	International	Data28.dat
34	Guyana - South American 1969	South American 1969	Data30.dat
35	Hawaii-North American 1983	GRS1980	Data32.dat
36	Hong Kong	International	Data31.dat
37	Hu_Tsu_Shan Taiwan	International	Data33.dat
38	Hungary – S-42 (Pulkovo 1942)	Krassovsky 1940	Data65.dat
39	Indian 1960	Everest 1830	Data34.dat
40	Ireland – 1965	Modified Airy	Data35.dat
41	Kazakhstan – S-42 (Pulkovo 1942)	Krassovsky 1940	Data65.dat
42	Kenya, Tanzania- ARC 1960	Clarke 1880	Data53.dat
43	Latvia – S-42 (Pulkovo 1942)	Krassovsky 1940	Data67.dat
44	Liberia – 1964	Clarke 1880	Data36.dat
45	Mexico, central America	GRS1980	Data38.dat
46	OMAN	Clarke 1880	Data39.dat
47	Pakistan	Everest 1830	Data40.dat
48	Paraguay - South American 1969	South American 1969	Data42.dat
49	Peru1 – South American 1969	South American 1969	Data41.dat
50	Philippines	Clarke 1866	Data43.dat

GPS-20 Operating Manual

51	Poland – S-42 (Pulkovo 1942)	Krassovsky 1940	Data68.dat
52	Potsdam	Bessel 1841	Data71.dat
53	Puerto Rico – Virgin Islands	Clarke 1866	Data44.dat
54	Qatar national	International	Data45.dat
55	Qornoq – Greenland (SOUTH)	International	Data46.dat
56	Regional Mean	South American 1969	Data48.dat
57	Reunion – Mascarene Islands	International	Data47.dat
58	Romania – S-42 (Pulkovo 1942)	Krassovsky 1940	Data69.dat
59	Rome 1940 – Italy	International	Data49.dat
60	Saudi Arabia – Ain el Abd 1970	International	Data50.dat
61	Singapore	Modified Fischer 1960	Data51.dat
62	South Africa	Clarke 1880	Data52.dat
63	Thailand 1975	Everest 1830	Data54.dat
64	Tokyo_Japan	Bessel 1841	Data60.dat
65	Tokyo_Korea	Bessel 1841	Data61.dat
66	Tokyo_Mean	Bessel 1841	Data59.dat
67	Tokyo_Okinawa	Bessel 1841	Data62.dat
68	Trinidad, Tobago	South American 1969	Data55.dat
69	Venezuela	South American 1969	Data57.dat
70	Venezuela – Provisional American 1956	International	Data56.dat
71	WGS84	WGS84	Data58.dat

5.2 Setting Syntax 5.2.1 Manufacturing Default:

Datum: WGS84. Baud Rate: 4800. Output: GGA, GSA, GSV, RMC.

5.2.2 Datum change syntax:

>DOS\Sirfprog /Fdataxx.dat -Px -Bx -Csh1

-Px: x is com port, 1= COM1, 2 = COM2 -Bx: x is baud rate, 4800, 9600, 19200 or 38400

Example: Change Datum to WGS84, Sirfprog /Fdata58.dat –P1 –B4800 –Csh1 <Entry>

After changing datum, the new datum will be kept in SRAM. If no power supplied to GPS-20 for more than 9 days, user must re-set datum when power on.

6. Ordering Information

6.1 Product Options

6.1.1 Input Power

GPS-20-5: 5V (Standard: TTL level, No backup battery) **GPS-20-3**: 3.3V (Standard: TTL level, No backup battery)

6.2 Accessories

A-10302 Active Antenna, 2-Meter, MCX straight connector

A-10302-A Active Antenna, 2-Meter, MCX 90° connector

A-10305 Active Antenna, 5-Meter, MCX straight connector

A-10305-A Active Antenna, 5-Meter, MCX 90° connector

Active Antenna with other connector is produced on demand.

7. Warranty

The GPS-20 is warranted to be free from defects in material and functions for one year from the date of purchase. Any failure of this product within this period under normal conditions will be replaced at no charge to the customers.